Errata for Second Edition

©Actuarial Empire, LLC. 2017
January 14, 2017

1 Distributions, Moments, and VaR

1. In Definition 1.7, for the continuous distribution $F_{Y}(y)$ should be defined as:

$$
F_{Y}(y)= \begin{cases}0 & y<a \\ \frac{y-a}{b-a} & a \leq y \leq b \\ 1 & y>b\end{cases}
$$

2. In Example 1.8, we should have $f_{Y}(y)=\frac{1}{3}$ so

$$
\operatorname{Pr}(2 \leq Y \leq 4)=\int_{2}^{4} \frac{1}{3} d y=2 / 3
$$

3. In Example 1.13, Distribution 3 is actually $\operatorname{Unif}(\{1,3,5\})$.

2 Actuarial Models, Mixtures and Risk

1. Example 2.2 should show " $F_{Y}(y)=1-e^{-y /(c \theta)}$ " in two places as opposed to " $F_{Y}(y)=1-e^{-x /(c \theta)}$ ".

3 Continuous Models

1. In the end-of-chapter problems and solutions, the following changes are made:

- Problem 2: θ follows an exponential(1) distribution.
- Solution to Problem 2: $F(x \mid \theta)=1-e^{-\theta x}$ and $F(x \mid \lambda)=1-e^{-x / \lambda}$.
- Solution to Problem 11: We should have $A(t)=\int_{0}^{t} w x^{w-1} d x=t^{w}$, which results in a final answer of $S(3)=0.5247$.

5 Insurance Coverage Modifications

1. Before Theorem 5.16, the coinsurance symbol should be α instead of a.
2. Theorem 5.9, Theorem 5.12, and Theorem 5.16 should read "inflation r " instead of "inflation $1+r$ ".
3. In the end-of-chapter problems and solutions, the following changes are made:

- Problem 10: The maximum covered loss (not policy limit) is 30,000 .
- Solution to Problem 4: For an ordinary deductible, $E\left(Y^{L}\right)=\int_{d}^{\infty}(x-d) f(x) d x=7421.95$, resulting in $E\left(Y^{P}\right)=20,000$. The same quantities for a franchise deductible are then 7978.59 and 21,500 .
- Solution to Problem 11: The expected cost per payment should be written as $E\left(Y^{P}\right)=\frac{6269}{1-F_{X}\left(\frac{5000}{1.05^{3}}\right)}$. The final answer remains correct as is.

6 Aggregate Loss Models

1. In Theorem 6.11, s_{j} should be S_{j}.
2. In Example 6.20, we should have $E\left[(S-100)_{+}\right]=40$ and $E\left[(S-200)_{+}\right]=20$. Carrying through the calculation with these new numbers should produce an answer of 28 .

7 Mathematical Statistics

1. In Example 7.4, we could also conclude $\lim _{n \rightarrow \infty} \frac{n \theta}{n+1}=\theta$ based on dividing both numerator and denominator by n.

8 Analyzing Complete Data

1. In Example 8.10, the expressions for $F_{n}(x)$ and $f_{n}(x)$ should be defined over intervals that are in the form of $a \leq x<b$, not $a \leq x \leq b$.
2. In the last paragraph before the start of the problems, $F(X)$ should be replaced by $F(x)$.

9 Analyzing Modified Data

1. In paragraph after Example 9.3, r_{j} is the number of people at risk at time y_{j}.
2. To be more consistent with the accompanying formula, the verbal definition of (9.1) should read $r_{j}=$ those who died on or after $y_{j}+$ those censored on or after $y_{j}-$ those who haven't entered before y_{j}
3. Definition 9.8 should end before the estimators are introduced.
4. In Section 9.4, our general instructions are for the construction of a $100(1-\alpha) \%$ confidence interval, not a $100 \alpha \%$ interval and not necessarily restricted to a 95% confidence interval.
5. In the end-of-chapter problem solutions, Problem 15 should have a $r_{3}=19-1-2=16$ and $r_{4}=$ $16-1-0=15$. Aside from these minor changes in the table, the subsequent calculations are correct in a)-f).

10 Kernel Density Estimator

1. In the solution for end-of-chapter Problem 2, we should have $\theta=y_{j}(\alpha-1)$. The final answer should then be

$$
K_{y_{j}}(x)=1-\left(\frac{y_{j}(\alpha-1)}{x+y_{j}(\alpha-1)}\right)^{\alpha}
$$

11 Parametric Estimation

1. In Section 11.2, right after the 2 -steps required to interpolate for a percentile matching estimate, we give a quick example where we should have written $j=\lfloor(20+1) \cdot 0.5\rfloor=\lfloor 10.5\rfloor=10$ instead of $j=\lfloor(20+1) \cdot 5\rfloor=\lfloor 10.5\rfloor=10$.
2. In Example 11.17, the following changes are to be made:
(a) The second equation in Method 1 should be: $L(\theta)=\prod_{i=1}^{n} \frac{e^{-x_{i} / \theta}}{\theta}=\frac{e^{-\sum x_{i} / \theta}}{\theta^{n}}$.
(b) The first equation in Method 2 should be: $L(\theta)=\frac{e^{\frac{-x_{i}}{\theta}}}{\theta} \Rightarrow l(\theta)=-\frac{x_{i}}{\theta}-\ln \theta$. The second set of equations should read:

$$
\begin{aligned}
-E\left[\frac{\partial^{2} l}{\partial \theta^{2}}\right] & =-\left[-\frac{E\left(2 X_{i}\right)}{\theta^{3}}+E\left(\frac{1}{\theta^{2}}\right)\right] \\
& =-\left[-\frac{2 \theta}{\theta^{3}}+\frac{1}{\theta^{2}}\right] \\
& =\frac{1}{\theta^{2}}
\end{aligned}
$$

(c) The first equation in Method 3 should be: $L(\theta)=\prod_{i=1}^{n} \frac{e^{-x_{i} / \theta}}{\theta}=\frac{e^{-\sum x_{i} / \theta}}{\theta^{n}}$. All similar occurrences of the double summation in $E\left(\sum X_{i}^{2}+\sum_{i=1}^{n} \sum_{j=1}^{n} X_{i} X_{j}\right)$ should be similarly corrected to exclude the terms where $i \neq j$. The final equation in the example should be: $\frac{1}{\theta^{4}} E\left[\left(\sum X_{i}\right)^{2}\right]-\frac{n^{2}}{\theta^{2}}=$ $\frac{2 n}{\theta^{2}}+\frac{n^{2}}{\theta^{2}}-\frac{n}{\theta^{2}}-\frac{n^{2}}{\theta^{2}}=\frac{n}{\theta^{2}}$. All single summations should be $\sum_{i=1}^{n}$ and all double summations should be $\sum_{i=1}^{n} \sum_{j \neq i}$
3. The summations in the first two equations under Section 11.3 .1 should be iterating over j rather than i.
4. In the opening "Remark" under Section 11.4.2, the correct statement of the Cramer-Rao inequality should read "under appropriate regularity conditions, no unbiased estimator has a variance smaller than $1 / I(\theta)$ ". The current statement might be mistakenly interpreted as the variance must be smaller than the variance of $1 / I(\theta)$.
5. The second equation in Section 11.4.2 should be:

$$
(I(\theta))_{i j}=-E\left[\frac{\partial^{2} l(\theta \mid x)}{\partial \theta_{i} \partial \theta_{j}}\right]
$$

6. Below the second remark under Section 11.4.2, the explanation of the equation should read "where $[I(\theta)]_{i i}^{-1}$ is the (i, i)-th element in the inverse of the information matrix $I(\theta)$.".

12 Bayesian Estimation

1. In Example 12.14, the exponential distribution should have PDF $f(x)=\lambda e^{-\lambda x}$.

13 Model Selection

1. In the alternative statement of the Kolmogorov-Smirnov test statistic in Section 13.4.1, we should have

$$
D=\max _{t \leq x \leq u}\left\{\left|F_{n}(x-)-F^{*}(x)\right|,\left|F_{n}(x)-F^{*}(x)\right|\right\}
$$

The current printing included two occurrences of the word "max".

14 Simulation

1. In Example 14.2 and Example 14.4, we should have $F_{S}(s)$ defined on intervals of s rather than x.
2. Section 14.2.2 has the change given here http://actempire.com/wp-content/uploads/2013/03/ 250PageReplacement.pdf.
3. Example 14.10 should include a final line: Thus, $V{\widehat{a R_{0.8}}}(x)+T \widehat{V a R}_{0.8}(x)=34+36=70$.
4. Some of the end of section problems has been changed here http://actempire.com/wp-content/ uploads/2013/03/Solutions10-12Chpt14.pdf.

16 Bayesian Credibility

1. In Example 16.1, the final set of equations should be rewritten as:

$$
\begin{aligned}
\operatorname{Pr}(\text { claim occurs } \mid \text { claim occurred })= & P r(\text { type }=A \mid \text { claim occurred }) \operatorname{Pr}(\text { claim occurs } \mid \text { type }=A) \\
& +\operatorname{Pr}(\text { type }=B \mid \text { claim occurred }) \operatorname{Pr}(\text { claim occurs } \mid \text { type }=B) \\
& +\operatorname{Pr}(\text { type }=C \mid \text { claim occurred }) \operatorname{Pr}(\text { claim occurs } \mid \text { type }=C) \\
= & 0.2286(0.8)+(0.4286)(0.5)+(0.3429)(0.2) \\
= & 0.46576
\end{aligned}
$$

2. In Section 16.3.1 after the box summarizing the posterior, predictive, and prior distributions on the Gamma-Poisson model, our equation for the Bühlmann credibility-weighted estimate should be:

$$
E=z \times(\text { observed data })+(1-z) \times \text { prior mean }
$$

